skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "De Luis, Martin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Wood formation consumes around 15% of the anthropogenic CO 2 emissions per year and plays a critical role in long-term sequestration of carbon on Earth. However, the exogenous factors driving wood formation onset and the underlying cellular mechanisms are still poorly understood and quantified, and this hampers an effective assessment of terrestrial forest productivity and carbon budget under global warming. Here, we used an extensive collection of unique datasets of weekly xylem tissue formation (wood formation) from 21 coniferous species across the Northern Hemisphere (latitudes 23 to 67°N) to present a quantitative demonstration that the onset of wood formation in Northern Hemisphere conifers is primarily driven by photoperiod and mean annual temperature (MAT), and only secondarily by spring forcing, winter chilling, and moisture availability. Photoperiod interacts with MAT and plays the dominant role in regulating the onset of secondary meristem growth, contrary to its as-yet-unquantified role in affecting the springtime phenology of primary meristems. The unique relationships between exogenous factors and wood formation could help to predict how forest ecosystems respond and adapt to climate warming and could provide a better understanding of the feedback occurring between vegetation and climate that is mediated by phenology. Our study quantifies the role of major environmental drivers for incorporation into state-of-the-art Earth system models (ESMs), thereby providing an improved assessment of long-term and high-resolution observations of biogeochemical cycles across terrestrial biomes. 
    more » « less
  2. Abstract AimPrevious work demonstrated the global variability of synchrony in tree growth within populations, that is, the covariance of the year‐to‐year variability in growth of individual neighbouring trees. However, there is a lack of knowledge about the causes of this variability and its trajectories through time. Here, we examine whether climate can explain variation in within‐population synchrony (WPS) across space but also through time and we develop models capable of explaining this variation. These models can be applied to the global tree cover under current and future climate change scenarios. LocationGlobal. Time period1901–2012. Major taxa studiedTrees. MethodsWe estimated WPS values from a global tree‐ring width database consisting of annual growth increment measurements from multiple trees at 3,579 sites. We used generalized linear mixed effects models to infer the drivers of WPS variability and temporal trends of global WPS. We then predicted WPS values across the global extent of tree cover. Finally, we applied our model to predict future WPS based on the RCP 8.5 (2045–2065 period) emission scenario. ResultsAreas with the highest WPS are characterized by a combination of environments with both high mean annual temperature (>10°C) and low precipitation (<300 mm). Average WPS across all temperate forests has decreased historically and will continue to decrease. Potential implications of these patterns include changes in forest dynamics, such as higher tree growth and productivity and an increase in carbon sequestration. In contrast, the WPS of tropical forests of Central and South America will increase in the near future owing to reduced annual precipitation. Main conclusionsClimate explains WPS variability in space and time. We suggest that WPS might have value as an integrative ecological measure of the level of environmental stress to which forests are subjected and therefore holds potential for diagnosing effects of global climate change on tree growth. 
    more » « less